

Dirichlet Principles of Hitting Times for Non-reversible Markov Chains

Lu-Jing Huang

based on a joint work with prof. Y.-H. Mao

July 16, 2018

Lu-Jing Huang (BNU)

Dirichlet Principles for Hitting Times

July 16, 2018 1 / 24

1 Markov chain: reversibility vs non-reversibility

1 Markov chain: reversibility vs non-reversibility

2 Main results

3 Applications

Lu-Jing Huang (BNU)

Markov chains

• Let V be a finite state space. Let $K = (K_{ij})$ be a probability transition matrix(PTM), reversible w.r.t a probability measure π :

$$K_{ij} \ge 0, \quad \sum_j K_{ij} = 1, \quad \pi_i K_{ij} = \pi_j K_{ji}.$$

• Let P be also PTM, with π its stationary distribution:

$$\sum_{i} \pi_i P_{ij} = \pi_j.$$

• In general, P is not reversible, but we can get K from P:

$$K_{ij} = \frac{1}{2} [P_{ij} + P_{ji}^*], \quad P_{ij}^* = \frac{\pi_j P_{ji}}{\pi_i}$$

•
$$\lim_{n\to\infty} K_{ij}^{(n)} = \lim_{n\to\infty} P_{ij}^{(n)} = \pi_j.$$

- Which is better or faster?
- In MCMC, specially in classical Metropolis-Hastings algorithm, it proceeds by constructing a reversible Markov chain towards a given but implicit stationary distribution.
- Many authors recently found that non-reversible Markov chain is better in some respects.
 Hwang C.-R. et al (1993-2018): Non-reversible Markov chain, diffusion

- Asymptotic variance related to CLT
- Large deviation
- Spectral gap
- Mixing times

Asymptotic variance

 Asymptotic variance related to CLT: Let X_k is the Markov chain of P with stationary distribution π. Then for π(f) = 0,

$$\frac{1}{\sqrt{n}}\sum_{k=0}^{n-1}f(X_k) \Rightarrow N(0,\sigma^2(P,f))$$

with

$$\sigma^2(P, f) = \lim_{n \to \infty} \operatorname{Var}_{\pi} \left[\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} f(X_k) \right].$$

 The smaller σ²(P, f), the better! Sun, Gomez and Schmidhuber(2010); Chen and Hwang(2013); Pai and Hwang(2013); Hwang, Normanda and Wu(2015)

Large deviation

• Let the occupation measure $L_n = \frac{1}{n} \sum_{k=1}^n \delta_{X_k}$. Then $L_n \in LDP$ with rate function

$$I_P(\mu) := -\inf_{\phi>0} \sum_{i\in V} \mu_i \mathsf{log} rac{P\phi_i}{\phi_i}.$$

• Roughly, for large n,

$$\mathbb{P}(L_n \in \cdot) \simeq \exp\{-n \inf_{\mu} I_P(\mu)\}.$$

- Thus the bigger I_P(μ), the better! Bierkens(2016): Continuous time Markov chain
- Question is that $I_P(\mu) \ge I_K(\mu)$?

Spectral gap

• In $L^2(\pi)$:

 $\lambda(P) =$ spectral radius of $\sigma(P) \setminus \{1\}.$

• By total variance:

$$\rho(P) = \inf\{\epsilon : \sum_{j} |P_{ij}^{(n)} - \pi_j| \le C\epsilon^n\}.$$

• In the reversible case, $\lambda(P)=\rho(P)$ and we have the Poincaré inequality

$$1 - \lambda(P) = \inf\{\langle f, (I - P)f \rangle_{\pi} : \pi(f) = 0, \pi(f^2) = 1\}.$$

• Also the smaller $\lambda(P)$ or $\rho(P)$, the better. Hwang, Hwang-Ma and Sheu(1993, 2005): diffusions

Let

$$\tau_i = \inf\{n \ge 0 : X_n = i\}.$$

• For $i, j \in V$, define the commute time

$$T_{ij}(P) = \mathbb{E}_i \tau_j + \mathbb{E}_j \tau_i.$$

• The average hitting time

$$T_0(P) = \sum_i \sum_j \pi_i \pi_j \mathbb{E}_i \tau_j = \frac{1}{2} \sum_i \sum_j \pi_i \pi_j T_{ij}(P).$$

• In general, if $T_0(P)<\infty,$ then the chain is strongly ergodic: there exist $C<\infty$ and $\rho<1$ such that

$$\sup_{i} \sum_{j} |P_{ij}^{(n)} - \pi_j| \le C\rho^n.$$

Moreover, we have $\rho \leq 1 - 1/T_0(P)$.

- To see that the smaller $T_0(P)$, the better.
- Question: Which one is better between non-reversible Makov chain and its reversibility?

Previous results

• Let \tilde{f} be the solution of

$$\begin{cases} Pf(k) = f_k, & k \neq i, \ j; \\ f_i = 1, \ f_j = 0. \end{cases}$$

• The classical Thompson's principle(reversible case)

$$\begin{aligned} \mathsf{Cap}_{ij} &:= \pi_i \mathbb{P}_i(\tau_j < \tau_i^+) \\ &= \inf\{\langle f, (I-P)f \rangle_\pi : f_i = 1, f_j = 0\} \end{aligned}$$

 Gaudillière-Landim(2014) extended Thompson's principle to the non-reversible case: For every pair of points i ≠ j,

$$\mathsf{Cap}_{ij} = \inf\{\langle f, (I-P)(I-K)^{-1}(I-P)^*f \rangle_{\pi} : f_i = 1, f_j = 0\}$$

attains at $(\tilde{f} + \tilde{f}^*)/2$.

But

$$T_{ij}(P)(=\mathbb{E}_i\tau_j+\mathbb{E}_j\tau_i)=1/\mathsf{Cap}_{ij}.$$

We have a result on comparison:

Theorem (H.-Mao, 2017)

Let K be the reversible part of P. Fix any pair of $i \neq j$ and let $T_{ij}(K)$, $T_{ij}(P)$ respectively be the commute time between i, j of chains K and P. Then

$$T_{ij}(P) \le T_{ij}(K).$$

Consequently, the average hitting times $(T_0 = \frac{1}{2} \sum_{k,l} \pi_k \pi_l T_{kl})$ of chains satisfy

$$T_0(P) \le T_0(K).$$

• $T_0(P) = \sum_i \sum_j \pi_i \pi_j \mathbb{E}_i \tau_j = \sum_j \pi_j \mathbb{E}_{\pi} \tau_j.$

• So we decide to study the properties (variational formula) for the mean hitting time.

D Markov chain: reversibility vs non-reversibility

2 Main results

3 Applications

- Let P be a irreducible PTM on a denumerable state space V.
- It admits a unique stationary distribution π .

Define

$$D_{\lambda}(f,g) = \langle f, (I - e^{-\lambda} P)g \rangle_{\pi}, \ f, g \in L^{2}(\pi), \ \lambda \ge 0,$$

with the natural convention $D := D_0$.

• Note that P maybe non-reversible, so $D_{\lambda}(f,g) \neq D_{\lambda}(g,f)$.

Variational formula for the mean hitting time

• $\phi^* := (\mathbb{E}_i \tau^*_A : i \in V)$ is a solution of Poisson equation

$$\begin{cases} (I - P^*)x(i) = 1, & i \in A^c; \\ x_i = 0, & i \in A. \end{cases}$$

Theorem (H.-Mao, 2018)

For any non-trivial subset $A \subseteq V$,

$$1/\mathbb{E}_{\pi}\tau_{A} = D(\phi^{*}, \phi) = \inf_{f|_{A}=0, \pi(f)=1} \sup_{g|_{A}=0, \pi(g)=0} D(f-g, f+g).$$

• For a finite reversible P (Aldous-Fill's book [Chap 3, Prop 41]),

$$1/\mathbb{E}_{\pi}\tau_{A} = \inf_{f|_{A}=0,\pi(f)=1} D(f,f).$$

Variational formula for the Laplace transform of au_A

• $\psi^*:=(\mathbb{E}_i[\exp(-\lambda\tau^*{}_A)]:\ i\in V)$ is a solution of Poisson equation

$$\begin{cases} (I - e^{-\lambda} P^*) x(i) = 0, & i \in A^c; \\ x_i = 1, & i \in A. \end{cases}$$

Theorem (H.-Mao, 2018)

For any non-trivial subset $A \subseteq V$ and $\lambda > 0$,

$$\frac{1 - e^{-\lambda}}{1 - \mathbb{E}_{\pi}[exp(-\lambda\tau_A)]} = \inf_{f|_A = 0, \pi(f) = 1} \sup_{g|_A = 0, \pi(g) = 0} D_{\lambda}(f - g, f + g).$$

• This is new even for reversible *P*:

$$\frac{1 - \mathrm{e}^{-\lambda}}{1 - \mathbb{E}_{\pi}[\exp(-\lambda \tau_A)]} = \inf_{f|_A = 0, \pi(f) = 1} D_{\lambda}(f, f).$$

D Markov chain: reversibility vs non-reversibility

2 Main results

Lu-Jing Huang (BNU)

Monotonicity law

• Peskun ordering: For two PTMs K and P, $K \leq P$, if

$$K_{ij} \le P_{ij}, \quad i \ne j.$$

Theorem

Assume that K, P be irreducible PTMs with same stationary distribution π . If $K \leq P$ and K is reversible, then for any A,

$$\mathbb{E}_{\pi}[\exp(-\lambda\tau_A(K))] \leq \mathbb{E}_{\pi}[\exp(-\lambda\tau_A(P))], \quad \lambda > 0.$$

In particular, $\mathbb{E}_{\pi}[\tau_A(K)] \geq \mathbb{E}_{\pi}[\tau_A(P)].$

• Under peskun ordering, similar results for asymptotic variance, Peskun (1973), Tierney (1998)

Comparison theorem

- Let K be a reversible PTM with stationary distribution π .
- Γ is a vorticity matrix, i.e., $\Gamma 1 = 0$ and $\Gamma^T = -\Gamma$. Assume that

$$\Gamma_{ij} > \pi_i K_{ij}, \quad i \neq j.$$

Define

$$P_{\alpha} = K + \alpha \operatorname{diag}(\pi)^{-1} \Gamma, \quad -1 \le \alpha \le 1.$$

Theorem

For any subset A and $\lambda > 0$, denote by $R(\alpha)$ either $\mathbb{E}_{\pi}[\tau_A(\alpha)]$ or $T_0(\alpha)$. Then (1) $\mathbb{E}_{\pi}[\exp(-\lambda\tau_A(\alpha))] = \mathbb{E}_{\pi}[\exp(-\lambda\tau_A(-\alpha))]$ and $R(\alpha) = R(-\alpha)$, $\alpha \in [-1, 1]$. (2) $\mathbb{E}_{\pi}[\exp(-\lambda\tau_A(\alpha))]$ is non-increasing for $\alpha \in [-1, 0]$ and $R(\alpha)$ is non-decreasing for $\alpha \in [-1, 0]$.

Aldous-Fill's conjecture

Let

$$Z_{ij} = \sum_{n=0}^{\infty} [P_{ij}^{(n)} - \pi_j]$$

be the fundamental matrix of P.

 Aldous-Fill in their book (1995++)[Chapter 9, conjecture 22] conjectured that

 $\operatorname{trace}[Z^2(P^* - P)] \ge 0.$

• Let $P_{\lambda} = \lambda P + (1 - \lambda)P^*$, $\lambda \in [0, 1]$, then (we proved) this conjecture is equivalent to

$$T_0(P_{\lambda}) \le T_0(P_{1/2}).$$

• Previous result (H. and Mao, 2017): This is true!

Theorem

Assume that X is an irreducible Markov chain on the finite state space with PTM P. Then $[Z(P^* - P)Z]_{ii} \ge 0$ for any i. In particular, trace $[Z^2(P^* - P)] \ge 0$.

Thank you for your attention!

Lu-Jing Huang (BNU)

Dirichlet Principles for Hitting Times

July 16, 2018 24 / 24